Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Minden egész szám osztója önmagának, azaz a a minden egész a-ra."

Átírás

1 1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz a a minden egész a-ra. A 0-nak minden egész szám az osztója (még a 0 is!!!) Ha a és a, akkor a = vagy a =. ha a és c, akkor a c ha a és a c, akkor tetszőleges x és y egész számokra a x + yc. Definíció: A p > 1 egész számot prímszámnak nevezzük, ha pontosan kettő dara pozitív osztója van; az 1 és önmaga. Ha egy pozitív számnak kettőnél tö pozitív osztója van, akkor azt összetett számnak nevezzük. Tétel: A prímszámok halmaza végtelen. Számelmélet alaptétele: Minden 1-nél nagyo pozitív egész a sorrendtől eltekintve egyértelműen írható fel prímszámok pozitív egész kitevős hatványaként. Ez az adott szám prímtényezős felontása. Például 120 = Definíció: Az a és számok legnagyo közös osztójának nevezzük a legnagyo olyan d számot, melyre d a és d. A legnagyo közös osztót lnko(a, )-vel jelüljük. Például lnko(33, 21) = 3, lnko(40, 0) = 40. Hogyan lehetne kiszámítani két szám legnagyo közös osztóját algoritmikusan? Mivel egy szám prímtényezős felontását megtalálni általáan nehéz (az RSA kódolás is ezen alapszik!), így a legnagyo közös osztó kiszámítására a középiskoláan tanult- prímtényezős felontáson alapuló- módszer nem ad hatékony algoritmust. Maradékos osztás tétele: Tetszőleges a és 0 számokhoz egyértelműen léteznek olyan p és q számok, melyekre a = p +q, ahol 0 q <. Ilyenkor azt mondjuk, hogy megvan a-an p-szer és marad q. 1

2 Például 30 = , azaz 30-an a 4 megvan 7-szer és marad a 2. Tétel: Legyenek a és pozitív számok. Osszuk el a-t -vel maradékosan, azaz legyen a = p + q, ahol 0 q <. Ekkor lnko(a, ) = lnko(, q). A tétel segítségével két számolhatjuk két szém legnagyo közös osztóját: Euklideszi-algoritmus: legyen a > 0 és 0 1. Ha = 0, akkor lnko(a, ) = a; 2. Ha 0 akkor osszuk el a-t maradékosan -vel: a = p + q, ahol 0 q <. a helyée írjuk e -t, helyée pedig q-t; ezzel az új (a, ) párral ugorjunk az 1. pontra! Pl. lnko(20, 6) = lnko(6, 2) = lnko(2, 0) = 2. Tétel: Legyenek a és pozitív számok. Osszuk el a-t -vel maradékosan, azaz legyen a = p + q, ahol 0 q <. Tegyük fel, hogy valamely x és y egész számokra lnko(a, ) = x + y q. Legyen x = y és y = x p y. Ekkor lnko(a, ) = x a + y. A tétel segítségével nem csak ki tudjuk számítani két pozitív egész legnagyo közös osztóját, hanem megadhatunk olyan x, y egészeket is, melyre lnko(a, ) = x a+y. Ez a módosított Euklideszi-algoritmus, melynek működését egy példán keresztül mutatjuk e. Példa: Adjunk meg olyan x, y egészeket, melyekre 62x+14y = lnko(62; 14). A módosított Euklideszi-algoritmus: a a lnko(a,) x y Az algoritmus először a sima Euklideszi-algoritmussal kiszámítja a és legnagyo közös osztóját. A harmadik oszlopan lévő szám azt mondja meg, hogy hányszor van meg a-an. Amikor = 0, akkor lnko(a, ) = a. Mivel a és legnagyo közös osztója minden soran ugyanannyi, ezért a 4. oszlopan végig ugyanaz a szám fog szerepelni. 2

3 Ezt követően nézzük a tálázat utolsó(!) sorát. Olyan x-t és y-t szeretnénk találni, melyre lnko(a, ) = xa + y, azaz 2 = 2 x + 0 y. Mivel az utolsó soran a értéke mindig(!) 0, ezért az x = 1 és y = 0 választás mindig megfelelő lesz. Ezután az előző tétel szerint alulról felfelé haladva, minden soran kiszámíthatjuk az x és y értékét az alái módon: ha egy soran, mondjuk az i. soran már ismerjük az x, illetve y értékét, akkor az eggyel felette lévő soran, azaz az (i 1). soran legyen x = y és y = x p y, ahol p az (i 1). soran lévő a értékkel egyezik meg. Ezt felhasználva a tálázat 4. soráan lévő x és y értékekre azt kapjuk, hogy x = 0, illetve y = = 1. (Leellenőrizhetjük, hogy az így kapott x és y értékekkel een a soran is fennáll az lnko(a, ) = xa + y összefüggés: 2 = valóan igaz.) Ezt követően határozzuk meg a harmadik soran lévő x és y értékeket: x = 1, illetve y = = 2. (Ekkor een a soran is teljesül, hogy lnko(a, ) = xa + y, hiszen 2 = ( 2).) Végezetül határozzuk meg a 2. soran x és y értékét: x = 2, illetve y = 1 4 ( 2) = 9. Az algoritmus ezzel véget ért. Az algoritmus tehát kiszámította, hogy a 62- nek és 14-nek a legnagyo közös osztója a 2, másrészt a legnagyo közös osztót, azaz a 2-őt előállította 2 = 62 ( 2) alakan. Tekintsük most a 12x + 21y = 100 egyenletet, és keressük ennek olyan megoldását melyen x és y is egész. Vegyük észre, hogy lnko(12; 21) = 3 ezért ármennyi is az x, illetve y értéke, az egyenlet al oldala osztható lesz 3- mal. A jo oldal viszont nem osztható 3-mal, így az egyenletnek nem létezik megoldása az egész számok köréen. Próáljuk most a 12x+21y = 90 egyenlet egy egész megoldását megkeresni. A módosított Euklideszi algoritmussal elő tudunk állítani olyan x 0 és y 0 egész számokat, melyekre 12x y 0 = lnko(12; 21) = 3. Mivel most az lnko(12; 21) = 3 osztója a jo oldalnak, azaz a 90-nek, ezért az előző egyenlet mindkét oldalát 90/3 = 30 -cal szorozva azt kapjuk, hogy 12 (30x 0 ) + 21 (30y 0 ) = 90, azaz az x = 30x 0 és y = 30y 0 megoldása lesz az eredeti feladatnak. A megoldás során használt észrevételeinket általánosan is megfogalmazhatjuk. Tétel: Legyenek a, pozitív egészek c pedig egész szám. Az ax + y = c egyenletnek akkor és csak akkor létezik egész x, y megoldása, ha lnko(a, ) c. Példa. a, Oldjuk meg az egészek köréen a 121x + 33y = 77 egyenletet! Alkalmazzuk a módosított Euklideszi-algoritmust a (121,33) párra. 3

4 a a lnko(a,) x y Azt kaptuk tehát, hogy lnko(121; 33) = 11. Mivel 11 77, ezért az egyenletnek van megoldása. Másrészt a módosított Euklideszi-algoritmus azt adta, hogy lnko(121; 33) = 11 = 121 ( 1) , amiől (mindkét oldalt 7- tel szorozva) azt kapjuk, hogy 77 = 121 ( 7) Ezek alapján a 121x + 33y = 77 egyenlet egy egész megoldása az x = 7, y = 28., Oldjuk meg az egészek köréen a 165x + 45y = 400 egyenletet! Futtassuk a módosított Euklideszi-algoritmust a (165;45) párra! a a lnko(a,) Az algoritmus futása során azt kapjuk, hogy lnko(165; 45) = 15. Azonan a 15 nem osztója a 400-nak, ezért az egyenletnek nincs megoldása, így a módosított Euklideszi-algoritmust nem is kell tová folytatni Kongruenciák Definíció. Legyenek a és egész számok, m pedig egy nem nulla egész szám. Azt mondjuk, hogy a és kongruensek modulo m, ha m a. Jelölése: a mod (m). Példa. A definíció szerint például mod (5), hiszen az 5 osztója a = 20-nak. Egyszerűen meggondolható, hogy a és pontosan akkor lesz kongruens modulo m, ha a és ugyanolyan maradékot adnak m-mel osztva. 4

5 Tétel. 1. a a mod (m) minden egész a és nem nulla m egész számra. 2. Ha a mod (m), akkor a mod (m) 3. Ha a mod (m) és c mod (m), akkor a c mod (m) 4. Ha a mod (m) és c d mod (m), akkor a + c + d mod (m) 5. Ha a mod (m) és c d mod (m), akkor a c d mod (m) 6. Ha a mod (m), akkor minden pozitív egész n-re a n n mod (m). Gyakorlásképpen most eizonyítjuk a Tétel 4. pontját (a töi állítás hasonlóan látható e). Azt szeretnénk tehát elátni, hogy ha a mod (m) és c d mod (m), akkor a + c + d mod (m). Tegyük fel tehát, hogy a mod (m) és c d mod (m); ez a definíció alapján azt jelenti, hogy m a és m c d. Felhasználva, hogy (a + c) ( + d) = a + c d = (a )+(c d), továá azt, hogy a feltevésünk szerint a oszható m-mel, és d is osztható m -mel, azt kapjuk, hogy (a + c) ( + d) is osztható m-mel. Ez viszont pontosan azt jelenti, hogy a+c +d mod (m), és éppen ezt akartuk izonyítani. Feladat. Adjunk meg olyan x egész számot, melyre 33x 1 mod (211). Megoldás. A definíció szerint olyan x számot keresünk, melyre x 1. Az oszthatóság definíciója alapján ez azt jelenti, hogy létezik olyan y egész szám, melyre 211y = 33x 1. Az egyenletet átrendezve azt kapjuk, hogy az 1 = 33x 211y diofantikus egyenletet kell megoldanunk, ami az y = y jelöléssel 1 = 33x + 211y alakan írható fel. Futtassuk le a módosított Euklideszi-algoritmust a (33; 211) párra! a a lnko(a,) x y

6 A módosított Euklideszi-algoritmus tehát azt adta, hogy 1 = lnko(33; 211) = ( 5) amiől x = 32 adódik (y = 5, y = y = 5). Tehát a 33x 1 mod (211) kongruenciának egy megoldása az x = 32. Vegyük észre, hogy ha a 32-höz hozzáadjuk a modulust, azaz a 211-et, akkor szintén egy megoldását kapjuk kongruenciának, hiszen 33 ( ) = , s mivel az összeg második tagja (33 211)osztható 211-gyel, ezért 33 ( ) ugyanolyan maradékot fog adni 211-gyel osztva, mint Teljesen hasonlóan elátható, hogy tetszőleges A egész esetén, az x = A megoldása lesz a kongruenciának! Moduláris hatványozás Feladat Adottak az a, és c pozitív egész számok. Számítsuk ki, hogy a-nak a. hatványa milyen maradékot ad c-vel osztva! Természetesen megpróálhatjuk azt, hogy az a számot megszorozzuk önmagával -szer (a = a a... a, ahol dara a szerepel a szorzatan), majd megnézzük, hogy az így kapott szám milyen maradékot ad c-vel osztva. Ezzel az eljárással két proléma is van. Egyrészt, ha a nagy (például tö ezer jegyű), akkor,,rengeteg szorzást kell elvégeznünk, vagyis az eljárás lassú lesz. Másrészt nagy a, illetve esetén az a hatvány eredménye is túl nagy lenne. A titkosításan használt RSA-kód esetén mind a titkosításnál, mind a titkosított üzenet visszafejtésénél ezt a feladatot kell akár tö ezer jegyű a, és c esetén gyorsan megoldanunk, ezért a feladat általános megoldására más, hatékony algoritmust kell keresnünk. Az algoritmus működéset egy kis példán mutatjuk e. Számítsuk ki, hogy milyen maradékot ad nak a 16. hatványa 2017-tel osztva! Az eljárás ötlete azon a tételen alapszik, hogy ha a mod (m), akkor minden pozitív egész n-re a n n mod (m). Nézzük, hogyan lehetne ezt hasznosítani a feladat megoldásához! Először is nézzük meg, hogy milyen maradékot ad 2017-tel osztva Azt kapjuk, hogy az osztási mardék 30, azaz mod (2017). Ekkor a tétel szerint mod (2017), azaz a feladat megoldásához elegendő kiszámítanunk, hogy milyen maradékot ad 2017-tel osztva Emeljük először négyzetre a 30-at, és nézzük meg, hogy milyen maradékot 6

7 ad 2017-tel osztva! mod (2017) Ezután ismét felhasználva a tételt azt kapjuk, hogy 30 4 = (30 2 ) mod (2017) Ismét a tételt felhasználva kapjuk, hogy Majd végezetül Így tehát azt kaptuk, hogy 30 8 = (30 4 ) mod (2017) = (30 8 ) mod (2017) mod (2017) azaz nak a 16. hatványa 682 maradékot ad 2017-tel osztva. Az eljárás lényege tehát az, hogy először is megnézzük, hogy az a szám (esetünken a ) milyen r maradékot ad c-vel (2017)-tel osztva, és ennek az r maradéknak számítjuk ki a. hatványának az osztási maradékát c-vel osztva. Ezt pedig ismételt négyzetreemeléssel tesszük meg: négyzetre emeljük r-et, és egyől megnézzük, hogy az így kapott szám milyen r 1 maradékot ad c-vel osztva. Ezután négyzetre emeljük r 1 -et, és megnézzük, hogy az így kapott szám milyen r 2 maradékot ad c-vel osztva, majd ezt az eljárást folytatjuk tová. Ezt az eljárást hívják moduláris hatványozásnak. 7

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Bevezetés az algebrába az egész számok 2

Bevezetés az algebrába az egész számok 2 Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

illetve a n 3 illetve a 2n 5

illetve a n 3 illetve a 2n 5 BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)

Részletesebben

Szakács Lili Kata megoldása

Szakács Lili Kata megoldása 1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Waldhauser Tamás december 1.

Waldhauser Tamás december 1. Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

Matematika 7. osztály

Matematika 7. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.

Részletesebben

SZÁMELMÉLETI FELADATOK

SZÁMELMÉLETI FELADATOK SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

Data Security: Public key

Data Security: Public key Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.

2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója. Számelmélet és rejtjelezési eljárások. (Számelméleti alapok. RSA és alkalmazásai, Die- Hellman-Merkle kulcscsere.) A számelméletben speciálisan az egész számok, általánosan a egységelemes integritási tartomány

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

2018, Diszkre t matematika. 8. elo ada s

2018, Diszkre t matematika. 8. elo ada s Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

SE EKK EIFTI Matematikai analízis

SE EKK EIFTI Matematikai analízis SE EKK EIFTI Matematikai analízis 2. Blokk A számelmélet a matematikának a számokkal foglalkozó ága. Gyakran azonban ennél sz kebb értelemben használják a számelmélet szót: az egész számok elméletét értik

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

KÉSZÍTSÜNK ÁBRÁT évfolyam

KÉSZÍTSÜNK ÁBRÁT évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Bevezetés az algebrába az egész számok

Bevezetés az algebrába az egész számok Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

Prímtesztelés, Nyilvános kulcsú titkosítás

Prímtesztelés, Nyilvános kulcsú titkosítás Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Waldhauser Tamás. Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb.

Waldhauser Tamás. Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb. BEVEZETÉS A SZÁMELMÉLETBE vázlat az előadáshoz (2014 őszi félév) Waldhauser Tamás 1. Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében Az oszthatósági reláció alapvető tulajdonságai

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

1. melléklet: A tanárokkal készített interjúk főbb kérdései

1. melléklet: A tanárokkal készített interjúk főbb kérdései 12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++

Részletesebben

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Polinomok (előadásvázlat, október 21.) Maróti Miklós Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet Számelmélet DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. DEFINÍCIÓ: (Reciprok) Egy 0

Részletesebben

NEVEZETES SZÁMELMÉLETI FÜGGVÉNYEKRŐL

NEVEZETES SZÁMELMÉLETI FÜGGVÉNYEKRŐL NEVEZETES SZÁMELMÉLETI FÜGGVÉNYEKRŐL SZAKDOLGOZAT Készítette: Farkas Mariann Matematika BSc Tanári szakirány Témavezető: Pappné Dr. Kovács Katalin, egyetemi docens Algebra és Számelmélet Tanszék Eötvös

Részletesebben

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy. Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

Számelmélet. Oszthatóság

Számelmélet. Oszthatóság Számelmélet Oszthatóság Egy szám mindazok az egész számok, amelyek az adott számban maradék nélkül megvannak. Pl: 12 osztói: 12=1x12=(-1)x(-12)=2x6=(-2)x(-6)=3x4=(-3)x(- 4) Azt is mondhatjuk, hogy 12 az

Részletesebben

Gyors fejszámolási tippek, trükkök és ötletek (II. rész)

Gyors fejszámolási tippek, trükkök és ötletek (II. rész) Gyors fejszámolási tippek, trükkök és ötletek (II. rész) Tuzson Zoltán, Székelyudvarhely Az előző részben bemutatott trükkök után, most következzenek sajátos alakú kétjegyű számok szorzása, és hatványozása:

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Oszthatósági alapfogalmak, oszthatósági szabályok

Oszthatósági alapfogalmak, oszthatósági szabályok Számelmélet Oszthatósági alapfogalmak, oszthatósági szabályok 305 a) hamis, b) igaz, c) igaz, d) igaz, e) igaz, f) igaz, g) hamis, h) igaz, i) igaz, j) hamis, k) igaz, l) hamis, m) igaz, n) hamis, o) hamis,

Részletesebben

Mintafeladat az RSA algoritmus szemléltetésére

Mintafeladat az RSA algoritmus szemléltetésére Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az

Részletesebben

Eötvös Loránd Tudományegyetem. Természettudományi Kar. Gyarmati Richárd. Számelmélet feladatok szakkörre. Bsc szakdolgozat.

Eötvös Loránd Tudományegyetem. Természettudományi Kar. Gyarmati Richárd. Számelmélet feladatok szakkörre. Bsc szakdolgozat. Eötvös Loránd Tudományegyetem Természettudományi Kar Gyarmati Richárd Számelmélet feladatok szakkörre Bsc szakdolgozat Témavezet : Dr. Szalay Mihály Algebra és számelmélet tanszék Budapest, 206 2 Köszönetnyilvánítás

Részletesebben