Hőtranszport a határolószerkezetekben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hőtranszport a határolószerkezetekben"

Átírás

1 Az épületfizika tárgya Az épületfizika tantárgy törzsanyagában szereplő témák A transzportfolyamatok vizsgálatának célja: az áramok pillanatnyi értékének meghatározása épületgépészeti rendszerek beépítendő teljesítménye az áramok integrálértékének meghatározása fogyasztás a potenciáleloszlások meghatározása állagvédelem a jó hőérzeti feltételek és belső levegőminőség biztosítása Az építészeti és szerkezettervezés célja többek között a fogyasztás csökkentése az észszerűség határáig, az állagvédelem és a megfelelő komfort biztosítása. A tárgyalt jelenségek zöme transzportfolyamat Lényege: valamilyen potenciálkülönbség miatt valami áramlik Az épületfizikában vizsgált transzportfolyamatok - hő hőmérsékletkülönbség hatására - vízgőz parciális nyomáskülönbség hatására - levegő nyomáskülönbség hatására Hőtranszport a határolószerkezetekben Sugárzást át nem bocsátó szerkezetek opak szerkezetek (azért nem átlátszatlan, mert nemcsak a látható, hanem az infrasugárzás is szerepel) 1

2 Miért hőtranszport? mert többféle folyamat játszódik le - vezetés szilárd anyagban, nyugalomban lévő folyadékban, gázban azaz a határolószerkezet szilárd anyagú rétegeiben kis vastagságú vízszintes légrétegekben, iránytól függően - átadás felület és áramló levegő között helyiség levegője és belső felület között ahol a levegő jellemzően a hőmérsékletkülönbség miatt mozog külső levegő és külső felület között ahol a szélhatás miatt még intenzívebb a légmozgás - sugárzás két olyan felület között, amelyek egymást látják belső térhatárolás és külső határolás belső felületei között külső felületek és talaj, burkolat, más épületek között külső felületek és égbolt között külső felületek és a Nap között belső felületek és a Nap között transzparens szerkezeteken át Hővezetés: Hővezetési tényező az anyag jellemzője. Értelmezése: egységnyi élhosszúságú kocka, két szemközti felülete között egységnyi hőmérsékletkülönbség hatására átjutó hőenergia mennyisége Mértékegysége J smk Jele W mk Ezek a folyamatok gyakran keverednek, például egy felületen átadás és sugárzás, egy laza szálas hőszigetelésben vezetés és átadás, egy légrétegben vezetés, átadás és a szembenéző felületek között sugárzás További lehetséges forma: a levegő valahonnan valahová áramlik vagy hőmérsékletkülönbség vagy kényszer (pl. szél, szellőztető berendezés) hatására és az áramló levegő hőt is szállít - ez a konvektív transzport. Előfordul légrétegben, laza szálas hőszigetelő anyagokban. A hővezetési tényező nagyságrendje: kis sűrűségű (15-2O kg/m 3 ) hőszigetelő anyagok: O,O35-O,O4O nagyobb sűrűségű hőszigetelő anyagok O,1-O,2 könnyű falazóelemek: O, 3-O,6 tégla O,6-O,9 könnyű beton (12OO-18OO kg/m 3 ) O,4-O,8 vasbeton 1,55 acél 58 aluminium 185 Tendencia: könnyebb anyag kisebb hővezetési tényező (kivétel az aluminium) Izotróp anyag: a hővezetési tényező nem függ az iránytól Anizotróp anyag: a vezetés irányfüggő (fa, nád ) 2

3 A hővezetési tényező nem állandó: függ az anyag nedvességtartalmától, esetleges roskadástól, tömörödéstől (önsúly, más réteg, helyzete), hőmérséklettől. deklarált értéke: gyári új állapotban tervezési értéke: beépített állapotban, az előbbi hatások alatt tervezési deklarált ( 1 ) A felület és a környezet közötti hőcserét a hőátadási tényező jellemzi Jele (h), mértékegysége W/m 2 K, a belső oldalra i, a külsőre e indexek utalnak. A hőátadási tényezők reciprokai a felületi ellenállások: Ri, Re. Átadásra és hosszúhullámú sugárzásra együtt jellemző értékek. A különbség többször 1O % is lehet! Mi történik a szilvával, midőn lekvár lesz belőle? És mi történik a hőszigeteléssel, ha sablonban szendvicspanel készül? A határolószerkezetek többnyire párhuzamos síklapokkal határoltak, amelyek hőmérsékletei különböznek. A hőáram ezek síkjára merőlegesen, egy irányban áramlik (egydimenziós). A hőmérsékletek időben állandóak, a hőáram stacioner. A hőáram egyenesen arányos a hőmérsékletkülönbséggel és a hővezetési tényezővel, fordítottan a réteg vastagságával. Egységnyi homlokfelületre q ( t1 t2) W / m d A réteg jellemzője a vezetési ellenállás 2 d 2 R m K / W Több réteg esetén az egyes rétegek ellenállásai összegeződnek (az egyszerű Ohm törvény analógiájára) A teljes ellenállás Rö = Ri + Rj + Re Ennek reciproka U R i jn j1 R R j e 1 i jn j1 a hőátbocsátási tényező (k, U), mértékegysége W/m 2 K Jellemző értékek: fal: O,2 - O,7 1,5 felső zárófödém: O,1 - O,4-1,0 alsó zárófödém: O, 5 - O,9 1,7 ablak 1, 0-2,0 3,0 (mai cél századforduló hatvqnqs évek jellemző számai 1 1 d j 1 j e 3

4 A hőátbocsátási tényező ismeretében a hőáram számítható. Az épületből távozó összes hőáram (transzmissziós hőveszteség): Q = Aj Uj (ti - te) A hőáram ismeretén túl állagvédelmi szempontból szükséges a keresztmetszetben kialakuló hőmérsékleteloszlás ismerete is (páralecsapódás a belső felületen, a kapillárisokban, a szerkezet belsejében, fagyhatár). A hőmérsékleteloszlás meghatározásának elve: az áram bármely, a homlokfelülettel párhuzamos síkban ugyanakkora, vagyis minden rétegen ugyanaz az áram halad át, és ugyanez az áram halad át a belső és a külső felületen is- Ugyanakkora áram áthajtásához annál nagyobb hőmérsékletkülönbség kell, minél nagyobb az áramút adott szakaszának az ellenállása. Az egy szakaszra jutó hőmérsékletkülönbség úgy aránylik a teljes (ti - te) hőmérsékletkülönbséghez, ahogyan a szakasz ellenállása aránylik a teljes hőátbocsátási ellenálláshoz: Rj / Rö = tj / (ti - te) Egy homogén anyagú rétegben a hőmérsékleteloszlás egyenes mentén változik. A felületek mentén a hőmérséklet a felülettel érintkező igenvékony határrétegben változik. Részletek nélkül ezt csak egy ívvel jelezzük, ennek a felületet ábrázoló vonal az érintője. A szakaszhatárokon a hőmérsékletet tehát úgy állapítjuk meg, hogy a teljes hőmérsékletkülönbséget a szakasz-ellenállások arányában felosztjuk. Tekintsük a belső és a külső hőmérséklet tervezési értékeit: egyrétegű fal esetén különbségüket három részre kell osztani aszerint, hogy a két felületi ellenállás és a fal vezetési ellenállása hogyan aránylik az összes ellenálláshoz. A hőmérsékleteloszlás ismeretében a fagyhatár kijelölhető. (Megjegyzendő, hogy a pórusokban -azok méretétől függően a H2O 0 o C-nál alacsonyabb hőmérsékleten lesz szilárd halmazállapotú.) 4

5 A hőmérsékleteloszlás vonalának meredeksége arányos a hőárammal amely -egységnyi homlokfelületre - a következő formában is felírható: t1 t2 q ( t1 t2) d d A teljes hőmérsékletkülönbséget felosztjuk az ellenállások arányában Az utóbbi formában a képletben szereplő hányados az adott x - t koordinátarendszerben a vonal meredeksége. Időben állandósult folyamat esetén egy rétegből annyi áram távozik, amennyi abba belép, az áram az x tengely mentén nem változik. Ezért, amíg nem változik (az anyag homogén), addig a vonal meredeksége sem változik homogén rétegben az eloszlás lineáris. A réteghatárokon változik, ezzel a meredekség is változik - de a szorzat-azaz az áram - nem! Elvileg nem változik a kép akkor sem, ha a szerkezet többrétegű. A kiinduló adatpár a belső és a külső hómérséklet tervezési értéke: A felületeken és a réteghatárokon jelöljük a t értékeket: 5

6 A valóságban időben változó folyamatok szempontjából fontos, hogy a szerkezet mennyi hőt tárol - ez nagyban függ a rétegsorrendtől! A réteghatárokon kijelölt pontokat egy-egy rétegen belül egyenesekkel összekötjük - a szakaszok meredeksége azonnal mutatja, hol van hőszigetelő réteg: Jellemző hőmérsékleteloszlások: egyrétegű, külső, belső és közbenső hőszigetelés. A felületeknél a hőmérsékletkülönbség annál kisebb, minél nagyobb a teljes szerkezet hőátbocsátási ellenállása 6

7 7

8 Vonakmenti hőátbocsátási tényező Ψ W/mK élek mentén (sarkok, csatlakozások, pillérek, koszorúk, áthidalók, szarufák) kialakuló többlet hőveszteség számítására Pontszerű hőhídra Ψ W/K karcsú átkötések, rögzítések (betonvas, dübel) által okozott többlet hőveszteség számítására 8

9 Hőhíd szoftverrel számított eredő Uer=0,2504 W/m 2 K A számítás elve: az érkező és távozó hőáramok algebrai összege nulla Lineáris hőátbocsátási tényező: Pszi=0,0472 W/mK Rétegrendi U a gerenda keresztmetszetben: U fa = 0,4557 W/m 2 K Rétegrendi U a hőszigetelés keresztmetszetben: U szig =0,2032 W/m 2 K Felületarányosan súlyozott Uer=(U fa *A fa +U szig *A szig )/(A fa +A szig ) =0,2386 W/m 2 K Hőhídhatás 18% Hőhíd szoftverrel számított eredő Uer=0,4833 W/m 2 K Lineáris hőátbocsátási tényező: Pszi=0,1877 W/mK Rétegrendi U a gerenda keresztmetszetben: U fa =1,5248 W/m 2 K Rétegrendi U a hőszigetelés keresztmetszetben: U szig =0,2956 W/m 2 K Felületarányosan súlyozott Uer=(U fa *A fa +U szig *A szig )/(A fa +A szig ) =0,4677 W/m 2 K Hőhídhatás 63% Ha az általános helyen vett metszetet tekintjük, a követelményérték kielégítése nem tűnik problémának. De az elemen belül kritikus helyeket is találunk, hiszen az elemnek mechanikai követelményeket is ki kell elégítenie. 9

10 A fegyverzeteket összekötő elemek ugyan karcsúak, de anyaguk hővezetési tényezője három nagyságrenddel nagyobb, mint a körülötte lévő hőszigetelésé. Ezért igen karcsú kapcsolatokon is nagyságrendileg ugyanannyi hő képes távozni, mint a homlokfelület több, mint 99%-át kitevő általános metszetű (hőhídmentes) felületen. Emiatt az elem eredő hőátbocsátási tényezője jelentősen megnő a követelményérték azonban erre vonatkozik! Ha nem alkalmaznánk hőhíd megszakítást, a belső felületi hőmérséklet a csatlakozásnál mintegy 5 K-nel csökkenne. A rétegtervi hőátbocsátási tényező U = 0,21 W/m2K. A vonalmenti hőátbocsátási tényező = 0,33 W/mK, az eredő hőátbocsátási tényező U = 0,42 W/m 2 K. 10

11 A hőhídmegszakítás a belső síkon kialakuló hőmérsékletcsökkenést jelentősen mérsékli. A rétegtervi hőátbocsátási tényező U = 0,21 W/m2K. A vonalmenti hőátbocsátási tényező = 0,22 W/mK, az eredő hőátbocsátási tényező U = 0,35 W/m 2 K. Kevésbé veszélyes és veszélyes hőhidak Az eredő érték Q Q rtg j Q lj A fal U rtg ( ti te) l jj ( ti te) j U U e rtg l j j A j Vízellátás - Csatornázás Vízellátás - Csatornázás 11

12 Hőhidak Talajra fektetett padló Hővesztesége az építmény kerületéhez köthető, ezért ezt is vonalmenti hőátbocsátási tényezővel jellemezzük, mely függ: A padló rétegrendjétől, különös tekintettel a benne lévő hőszigetelés vastagságától A lábazat kialakításától, annak hőszigetelésétől A geodetikus magasságkülönbségtől Vízellátás - Csatornázás Hőhidak Talajra fektetett padló Hogyan hőszigeteljük (főleg, ha a meglévő padló rétegrendjében nincs hőszigetelés? Úgy, hogy elvágjuk a hőáram útját a hőáram ne tudja kikerülni a hőszigetelést! Vízellátás - Csatornázás 12

Az épületfizika tantárgy törzsanyagában szereplő témák

Az épületfizika tantárgy törzsanyagában szereplő témák Az épületfizika tárgya Az épületfizika tantárgy törzsanyagában szereplő témák A tárgyalt jelenségek zöme transzportfolyamat Lényege: valamilyen potenciálkülönbség miatt valami áramlik Az épületfizikában

Részletesebben

Hőhidak hatása a hőveszteségre. Elemen belüli és csatlakozási hőhidak

Hőhidak hatása a hőveszteségre. Elemen belüli és csatlakozási hőhidak Kicsi, de fontos számítási példák hatása a hőveszteségre Elemen belüli és csatlakozási hőhidak Elemen belüli élek: oszlopok, pillérek, szarufák, szerelt burkolatot tartó bordák Elemen belüli pontszerű

Részletesebben

Az épületfizika tárgya. Az épületfizika tantárgy törzsanyagában szereplı témák

Az épületfizika tárgya. Az épületfizika tantárgy törzsanyagában szereplı témák Az épületfizika tárgya Az épületfizika tantárgy törzsanyagában szereplı témák A tárgyalt jelenségek zöme transzportfolyamat Lényege: valamilyen potenciálkülönbség miatt valami áramlik Az épületfizikában

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Beszéljünk egy nyelvet (fogalmak a hőszigetelésben)

Beszéljünk egy nyelvet (fogalmak a hőszigetelésben) Beszéljünk egy nyelvet (fogalmak a hőszigetelésben) (-) (-) (+) (+) (+/-) (+) Épületek hővesztesége Filtrációs hőveszteség: szabályozatlan szellőztetésből, tőmítetlenségekből származó légcsere Transzmissziós

Részletesebben

HŐHIDAK. Az ÉPÜLETENERGETIKÁBAN. Energetikus/Várfalvi/

HŐHIDAK. Az ÉPÜLETENERGETIKÁBAN. Energetikus/Várfalvi/ HŐHIDAK Az ÉPÜLETENERGETIKÁBAN Energetikus/Várfalvi/ A HŐHÍD JELENSÉG A hőhidak megváltoztatják a belső felületi hőmérséklet eloszlását Külső hőm. Belső hőm. A HŐHÍD JELENSÉG A hőhidak megváltoztatják

Részletesebben

Páradiffúzió a határolószerkezeteken át Transzport folyamat, amelyben csak a vezetést vizsgáljuk, az átadási ellenállások oly kicsinyek, hogy

Páradiffúzió a határolószerkezeteken át Transzport folyamat, amelyben csak a vezetést vizsgáljuk, az átadási ellenállások oly kicsinyek, hogy Páradiffúzió a határolószerkezeteken át Transzport folyamat, amelyben csak a vezetést vizsgáljuk, az átadási ellenállások oly kicsinyek, hogy gyakorlatilag elhanyagolhatóak. Az áramot előidéző potenciálkülönbség

Részletesebben

7/2006.(V.24.) TNM rendelet

7/2006.(V.24.) TNM rendelet 7/2006.(V.24.) TNM rendelet az épületek energetikai jellemzőinek meghatározásáról A rendelet hatálya a huzamos tartózkodásra szolgáló helyiséget tartalmazó épületre (épületrészre), illetve annak tervezésére

Részletesebben

BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett.

BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett. BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett. 1 1 2 U6 cm = = = 0,4387 W/ m K 1 d 1 1 0,015 0,06 0,3 0,015 1 + + + + + + + α λ α

Részletesebben

si = 18,5 C YTONG HŐHÍDKATALÓGUS

si = 18,5 C YTONG HŐHÍDKATALÓGUS si = 18,5 C YTONG HŐHÍDKATALÓGUS 2 1, BEVEZETÉS A hőhídkatalógus célja, hogy a tervezőknek és építtetőknek lehetővé tegye az új 7/2006. TNM rendelet szerinti energiahatékony, gyakorlatilag hőhídmentes

Részletesebben

Környezetmérnöki ismeretek 5. Előadás

Környezetmérnöki ismeretek 5. Előadás Környezetmérnöki ismeretek 5. Előadás Épített környezet védelme, energetika, állagvédelem Irodalom: MSZ-04-140-2:1991 Épületenergetika kézikönyv, Bausoft, 2009 (http://www.eepites.hu/segedletek/muszaki-segedletek/epuletenergetika)

Részletesebben

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról 3.sz Melléklet Követelményértékek 1 1. A határoló-és

Részletesebben

Elegáns hőszigetelés.

Elegáns hőszigetelés. Elegáns hőszigetelés A hőszigetelés fejlődése Hőátbocsátási tényező (W/m 2 K) Tető Fal Falazat Állagvédelmi szempontok 1,0 1,4 B30 Energiatakarékosság 1979 0,4 0,70 Uniform Környezetvédelem 1991 (0,3)

Részletesebben

GYAKORLATI ÉPÜLETFIZIKA

GYAKORLATI ÉPÜLETFIZIKA GYAKORLATI ÉPÜLETFIZIKA Az építés egyik célja olyan terek létrehozása, amelyekben a külső környezettől eltérő állapotok ésszerű ráfordítások mellett biztosíthatók. Adott földrajzi helyen uralkodó éghajlati

Részletesebben

SEGÉDLET. I.) A feladat pontosítása. II.) Elméleti háttér U = = = d. BME Építészmérnöki Kar Épületszerkezettan 3. Épületszerkezettani Tanszék

SEGÉDLET. I.) A feladat pontosítása. II.) Elméleti háttér U = = = d. BME Építészmérnöki Kar Épületszerkezettan 3. Épületszerkezettani Tanszék BME Építészmérnöki Kar Épületszerkezettan 3. Épületszerkezettani Tanszék Előadók: Dr. Becker Gábor, Dr. Hunyadi Zoltán Évf. felelős: Dr. Bakonyi Dániel 2016/17. tanév II. félév I.) A feladat pontosítása

Részletesebben

ISOVER Saint-Gobain Construction Products Hungary Kft.

ISOVER Saint-Gobain Construction Products Hungary Kft. ISOVER Saint-Gobain Construction Products Hungary Kft. TETŐ ÉPÍTŐK EGYESÜLETE Székesfehérvár 2014. 02. 13. Tetőterek, padlásfödémek hőszigetelése Dr. Laczkovits Zoltán okl. épületszigetelő szakmérnök HŐSZIGETELÉS

Részletesebben

Hőszigetelések anyagainak helyes megválasztása

Hőszigetelések anyagainak helyes megválasztása Hőszigetelések anyagainak helyes megválasztása 5 kwh/m² Dr. Józsa Zsuzsanna BME Építőanyagok és Mérnökgeológia Tanszék ÉPÜLETHATÁROLÓ SZERKEZETEK HŐÁTBOCSÁTÁSI KÖVETELMÉNYEI U f (W/m 2 K) Ország Külső

Részletesebben

ÉPÜLETENERGETIKA. Dr. Kakasy László 2016.

ÉPÜLETENERGETIKA. Dr. Kakasy László 2016. ÉPÜLETENERGETIKA Dr. Kakasy László 2016. AZ ÉPÜLETENERGETIKAI TERVEZÉS Az épületenergetikai szabályozás szintjei: I.szint: összesített energetikai jellemző E p kwh/m 2 a (épület+gépészet+villamos. jellemző)

Részletesebben

VITAINDÍTÓ ELŐADÁS. Műszaki Ellenőrök Országos Konferenciája 2013

VITAINDÍTÓ ELŐADÁS. Műszaki Ellenőrök Országos Konferenciája 2013 Műszaki Ellenőrök Országos Konferenciája 2013 VITAINDÍTÓ ELŐADÁS Az épületenergetikai követelmények változásaiból eredő páratechnikai problémák és a penészesedés Utólagos hőszigetelés a magasépítésben

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

Ajtók, ablakok épületfizikai jellemzői

Ajtók, ablakok épületfizikai jellemzői Termékek Műszaki Tervezése Ajtók, ablakok épületfizikai jellemzői Dr. Kovács Zsolt egyetemi tanár Ablakok vízzárásának osztályozása az MSZ EN 12208:2001 szabvány szerint a próbatestek vízzárási határának

Részletesebben

Épületenergetika: szabályozási környezet és abszolút alapok

Épületenergetika: szabályozási környezet és abszolút alapok Épületenergetika: szabályozási környezet és abszolút alapok 2018. Április 9. okl. építészmérnök, tudományos munkatárs BME Épületszerkezettani Tanszék 176/2008. (VI. 30.) Korm. rendelet az épületek energetikai

Részletesebben

HOMLOKZATBURKOLATOK. Cor-ten acél. Épületszerkezettan 3. Homlokzatburkolatok 2018 dr. Hunyadi Zoltán

HOMLOKZATBURKOLATOK. Cor-ten acél. Épületszerkezettan 3. Homlokzatburkolatok 2018 dr. Hunyadi Zoltán HOMLOKZATBURKOLATOK Cor-ten acél 1 HOMLOKZATBURKOLATOK burkolattokkal szemben tott követelmények burkolat és fal kölcsönhatása szerkesztési lehetőségek burkolat típusok könnyű burkolatok nehéz burkolatok

Részletesebben

Hőtechnika I. ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék

Hőtechnika I. ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék Hőtechnika I. Horváth Tamás építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék Környezeti hatások Adott földrajzi helyen uralkodó éghajlati hatások Éghajlat:

Részletesebben

XELLA MAGYARORSZÁG Kft. 1. oldal HŐHÍDMENTES CSOMÓPONTOK YTONG SZERKEZETEK ESETÉBEN

XELLA MAGYARORSZÁG Kft. 1. oldal HŐHÍDMENTES CSOMÓPONTOK YTONG SZERKEZETEK ESETÉBEN XELLA MAGYARORSZÁG Kft. 1. oldal HŐHÍDMENTES CSOMÓPONTOK YTONG SZERKEZETEK ESETÉBEN Juhász Gábor okl.építőmérnök, magasépítő szakmérnök Vitruvius Kft. juhasz.gabor @ vitruvius.hu Rt: 06-30-278-2010 HŐHIDAK

Részletesebben

épületfizikai jellemzői

épületfizikai jellemzői Könnyűbetonok épületfizikai jellemzői és s alkalmazásuk a magastető szigetelésében Sólyomi PéterP ÉMI Nonprofit Kft. Budapest, 2009. november 24. HŐSZIGETELŐ ANYAGOK Az általános gyakorlat szerint hőszigetelő

Részletesebben

ÉPÜLETENERGETIKA. Dr. Kakasy László 2015.

ÉPÜLETENERGETIKA. Dr. Kakasy László 2015. ÉPÜLETENERGETIKA Dr. Kakasy László 2015. AZ ÉPÜLETENERGETIKAI TERVEZÉS Az épületenergetikai szabályozás szintjei: I.szint: összesített energetikai jellemző E p kwh/m 2 év (épület+gépészet+villamos. jellemző)

Részletesebben

HŐVÉDELEM Hőátviteli folyamatok

HŐVÉDELEM Hőátviteli folyamatok Hőátviteli folyamatok Dr. Harmathy Norbert egyetemi adjunktus BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék Hővédelem Határolószerkezetek

Részletesebben

Családi ház hőkamerás vizsgálata

Családi ház hőkamerás vizsgálata Cég ORIGOSÁNTA ÉPÍTŐ ZRT Győri u. 32. Sopron Mérést végezte: Markó Imre Telefon: 99/511540 EMail: info@origosanta.hu Készülék testo 8752 Gyártási szám: Objektív: 1910101 normál Megbízó Megrendelő Mérőhely:

Részletesebben

A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése;

A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése; A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése; a hőellenállás mint modellezést és számítást segítő alkalmazásának elsajátítása; a különböző

Részletesebben

Hőtechnika II. ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék

Hőtechnika II. ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék Hőtechnika II. Horváth Tamás építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék 1 Hőátbocsátás Hőátbocsátás levezetett képlete: egydimenziós, stacioner

Részletesebben

Gyakorlati épületfizika 1. gyakorlati zárthelyi feladat Hőtechnikai feladatok. 2015. október 30.

Gyakorlati épületfizika 1. gyakorlati zárthelyi feladat Hőtechnikai feladatok. 2015. október 30. . október 30. Gyakorlati épületfizika. gyakorlati zárthelyi feladat Hőtechnikai feladatok A számítások elvégzéséhez a túloldali adatok alkalmazását javaslom. Kérem az ábrákban, táblázatokban jelölni a

Részletesebben

Épület rendeltetése Belső tervezési hőmérséklet 20 Külső tervezési hőmérséklet -15. Dátum 2010.01.10. Homlokzat 2 (dél)

Épület rendeltetése Belső tervezési hőmérséklet 20 Külső tervezési hőmérséklet -15. Dátum 2010.01.10. Homlokzat 2 (dél) Alapadatok Azonosító adatok lakóépület Épület rendeltetése Belső tervezési hőmérséklet 20 Külső tervezési hőmérséklet -15 Azonosító (pl. cím) vályogház-m Dátum 2010.01.10 Geometriai adatok (m 2 -ben) Belső

Részletesebben

ÉPÜLETENERGETIKA. Dr. Kakasy László 2014.

ÉPÜLETENERGETIKA. Dr. Kakasy László 2014. ÉPÜLETENERGETIKA Dr. Kakasy László 2014. AZ ÉPÜLETENERGETIKAI TERVEZÉS Az épületenergetikai szabályozás szintjei: I.szint: összesített energetikai jellemző E p kwh/m 2 év (épület+gépészet+villamos. jellemző)

Részletesebben

Magyarországon gon is

Magyarországon gon is Energiatakarékos kos üvegezés Lehetőségek, buktatók, k, trendek Épületek energiatanúsítása sa 2009-től Magyarországon gon is 7/2006 TNM és s 176/2008 Kormány rendelet Sólyomi PéterP ÉMI Kht. Épületszerkezeti

Részletesebben

STACIONER PÁRADIFFÚZIÓ

STACIONER PÁRADIFFÚZIÓ STACIONER PÁRADIFFÚZIÓ MSC Várfalvi A DIFFÚZIÓ JELENSÉGE LEVEGŐBEN Csináljunk egy kísérletet P A =P AL +P ο ο= P BL +P ο ο=p B Levegő(P AL ) Levegő(P BL ) A B Fekete gáz Fehér gáz A DIFFÚZIÓ JELENSÉGE

Részletesebben

MET.BME.HU 20124/ 2015 II. Szemeszter Előadó: Dr. DUDÁS ANNAMÁRIA BME Építőanyagok és Magasépítés Tanszék

MET.BME.HU 20124/ 2015 II. Szemeszter Előadó: Dr. DUDÁS ANNAMÁRIA BME Építőanyagok és Magasépítés Tanszék Magasépítéstan MSc 11. előadás: Épületek hőveszteségének csökkentése MET.BME.HU 20124/ 2015 II. Szemeszter Előadó: Dr. DUDÁS ANNAMÁRIA BME Építőanyagok és Magasépítés Tanszék BME MET 2014 / 2015. II. szemeszter

Részletesebben

Páradiffúzió a határolószerkezeteken át

Páradiffúzió a határolószerkezeteken át Páradiffúzió a határolószerkezeteken át Transzport folyamat, amelyben csak a vezetést vizsgáljuk, az átadási ellenállások oly kicsinyek, hogy gyakorlatilag elhanyagolhatóak. Az áramot elıidézı potenciálkülönbség

Részletesebben

Épületenergetikai számítás 1. κ - R [m 2 K/W]

Épületenergetikai számítás 1. κ - R [m 2 K/W] Épületenergetikai számítás 1 Szerkezet típusok: ablak2 ablak (külső, fa és PVC) x méret: 3.5 m 0.8 m Hőátbosátási tényező: 6.30 W/m 2 K A hőátbosátási tényező NEM MEGFELELŐ! ajtó2 üvegezett ajtó (külső,

Részletesebben

ÉPÜLETENERGETIKAI SZABÁLYOZÁS KORSZERŰSÍTÉSE 1

ÉPÜLETENERGETIKAI SZABÁLYOZÁS KORSZERŰSÍTÉSE 1 ÉPÜLETENERGETIKAI SZABÁLYOZÁS KORSZERŰSÍTÉSE 1 ÉPÜLETSZERKEZETEK HŐÁTBOCSÁTÁSI TÉNYEZŐK KÖVETELMÉNYÉRTÉKEI HŐÁTBOCSÁTÁSI TÉNYEZŐ W/m 2 K FAJLAGOS HŐVESZTESÉG- TÉNYEZŐ W/m 3 K ÖSSZESÍTETT ENERGETIKAI JELLEMZŐ

Részletesebben

Az aktív hőszigetelés elemzése 2. rész szerző: dr. Csomor Rita

Az aktív hőszigetelés elemzése 2. rész szerző: dr. Csomor Rita Az aktív hőszigetelés elemzése 2. rész szerző: dr. Csomor Rita Folytassuk az aktív hőszigetelés elemzését a ww.isoactive-3d.hu honlapon közölt leírás (http://www.isoactive-3d.hu/index.php?option=com_content&view=article&id=58:szigeteljuenk-esne-ftsuenk-foeldenergiaval&catid=3:newsflash)

Részletesebben

Építmények energetikai követelményei

Építmények energetikai követelményei Építmények energetikai követelményei Szikra Csaba Építészmérnöki Kar Padlók hőelnyelése Hőelnyelési tényező Kategóri riák: meleg félmeleg hideg Egyréteg tegű padló,, vagy egyréteg tegűnek tekinthető padló

Részletesebben

A másik következtetés az, hogy ugyanazonanyaggal különbözõ eredményt érhetünk el, aszerint, hogy hogyan és hová építjük be azt.

A másik következtetés az, hogy ugyanazonanyaggal különbözõ eredményt érhetünk el, aszerint, hogy hogyan és hová építjük be azt. ÉPÜLETFIZIKA 1 A hõvezetési tényezõ fogalma A hõáram a hõmérsékletkülönbséggel, a hõáram irányára merõleges keresztmetszettel, valamint egy vezetési tényezõvel arányos. Ez utóbbi a hõvezetési tényezõ,

Részletesebben

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR Környezetbarát, energiahatékony külső falszerkezetek YTONG és YTONG MULTIPOR anyagok használatával Környezetbarát, energiahatékony külső falszerkezetek Tartalomjegyzék: 1) Környezetbarát termék 2) Hőtechnika:

Részletesebben

ENERGETIKAI TERVEZÉS - SZÁMPÉLDA

ENERGETIKAI TERVEZÉS - SZÁMPÉLDA ENERGETIKAI TERVEZÉS - SZÁMPÉLDA Az épületenergetikai szabályozás 3 szintje: legfelső szint: összesített energetikai mutató (nem ezt számítjuk, mivel ehhez nélkülözhetetlenek az épületgépész és elektromos

Részletesebben

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR Környezetbarát, energiahatékony külső falszerkezetek YTONG és YTONG MULTIPOR anyagok használatával Környezetbarát, energiahatékony külső falszerkezetek Tartalomjegyzék: 1) Környezetbarát termék 2) Hőtechnika:

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

Üvegezés naptényezője és a g érték... 2. Négyszög keresztmetszetű kémény szakaszok szigetelése... 3

Üvegezés naptényezője és a g érték... 2. Négyszög keresztmetszetű kémény szakaszok szigetelése... 3 MAGAZIN. szám - 014. NOVEMBER TARTALOM: Üvegezés naptényezője és a g érték... Négyszög keresztmetszetű kémény szakaszok szigetelése... 3 Négyszög keresztmetszetű kémény szakaszok szigetelése II. AGROSD...

Részletesebben

Belső oldali hőszigetelés - technológiák és megtakarítási lehetőségek

Belső oldali hőszigetelés - technológiák és megtakarítási lehetőségek Belső oldali hőszigetelés - technológiák és megtakarítási lehetőségek belső oldali hőszigetelés - technológiák Lehetséges megoldások: 1.Párazáró réteg beépítésével 2.Párazáró / vízzáró hőszigetelő anyaggal

Részletesebben

A..TNM rendelet az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról

A..TNM rendelet az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról A..TNM rendelet az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról 2. sz. Melléklet Tervezési adatok 1 1. Éghajlati adatok

Részletesebben

GYAKORLATI ÉPÜLETFIZIKA

GYAKORLATI ÉPÜLETFIZIKA GYAKORLATI ÉPÜLETFIZIKA A fal rétegrendje (belülről kifelé) 1,5 cm vakolat 20 cm vasbeton fal 0,5 cm ragasztás 12 cm kőzetgyapot hőszigetelés 0,5 cm vékonyvakolat Számítsuk ki a fal hőátbocsátási tényezőjét,

Részletesebben

Lábazatok szigetelése

Lábazatok szigetelése Lábazatok szigetelése Épületeink lábazati szerkezeteit különösen nagy gondossággal és szakszerűséggel kell hőszigeteléssel és vízszigeteléssel ellátni. Épületfizikailag ez a szerkezeti csomópont nagyon

Részletesebben

H ŐÁTVITELI F OLYAM ATOK e g ys z e r űs ít e t t je lle m z é s e ÉP ÍTÉS Z

H ŐÁTVITELI F OLYAM ATOK e g ys z e r űs ít e t t je lle m z é s e ÉP ÍTÉS Z H ŐÁTVITELI F OLYAM ATOK e g ys z e r űs ít e t t je lle m z é s e ÉP ÍTÉS Z ÉPÜLETFIZIKAI HATÁSOK Az é p ü l e t e t k ü lö n b ö z ő h a t á s o k é rik H ŐM ÉR S ÉKLETI H ATÁS OK S ZÉL H ATÁS H ŐS U

Részletesebben

AZ ÉPÜLETÁLLOMÁNNYAL, LÉTESÍTMÉNYEKKEL KAPCSOLATOS ESZKÖZTÁR. Prof. Dr. Zöld András Budapest, 2015. október 9.

AZ ÉPÜLETÁLLOMÁNNYAL, LÉTESÍTMÉNYEKKEL KAPCSOLATOS ESZKÖZTÁR. Prof. Dr. Zöld András Budapest, 2015. október 9. AZ ÉPÜLETÁLLOMÁNNYAL, LÉTESÍTMÉNYEKKEL KAPCSOLATOS ESZKÖZTÁR Prof. Dr. Zöld András Budapest, 2015. október 9. Click to edit Master title FELÚJÍTÁS - ALAPFOGALMAK Hőátbocsátási tényező A határolószerkezetek,

Részletesebben

HŐSZIGETELT ÉPÜLETSZERKEZETEK. 29 féle szerkezet 16 féle hőszigetelő anyag

HŐSZIGETELT ÉPÜLETSZERKEZETEK. 29 féle szerkezet 16 féle hőszigetelő anyag HŐSZIGETELT ÉPÜLETSZERKEZETEK 29 féle szerkezet 16 féle hőszigetelő anyag HŐSZIGETELÉS MIÉRT? Állagvédelem Energiatakarékosság Komfortérzet Környezetvédelem, klímavédelem HOL? Kívül!!! HOGYAN? MIVEL? Egyenletes

Részletesebben

ALACSONY ENERGIÁJÚ ÉPÜLETEK ÉS PASSZÍVHÁZAK SZERKEZETEI

ALACSONY ENERGIÁJÚ ÉPÜLETEK ÉS PASSZÍVHÁZAK SZERKEZETEI TÁMOP JEGYZET PÁLYÁZAT Képzés- és tartalomfejlesztés, képzők képzése, különös tekintettel a matematikai, természettudományi, műszaki és informatikai képzésekre és azok fejlesztésére (Projektazonosító:

Részletesebben

Bazaltgyapot. Dűbel. Nobasil PTE

Bazaltgyapot. Dűbel. Nobasil PTE 1, Bazaltgyapot Nobasil PTE Terhelhető hő- és hangszigetelő tábla, elsősorban úsztatott padlószerkezetek lépéshang-szigetelésére, közbenső födémek akusztikai és tűzvédelmi szigeteléseként. 2, Dűbel 1 /

Részletesebben

Az aktív hőszigetelés elemzése 1. rész szerző: dr. Csomor Rita

Az aktív hőszigetelés elemzése 1. rész szerző: dr. Csomor Rita Ezzel a cikkel (1., 2., 3. rész) kezdjük: Az aktív hőszigetelés elemzése 1. rész szerző: dr. Csomor Rita 1.1 1. ábra 2. ábra Erre az összefüggésre később következtetéseket alapoz a szerző. Ám a jobb oldali

Részletesebben

Korszerű -e a hő h tá ro s? T th ó Zsolt

Korszerű -e a hő h tá ro s? T th ó Zsolt Korszerű-e ű a hőtárolás? Tóth Zsolt 1. Mikor beszélünk hőtárolásról? 1.Könnyűszerkezet 2.Nehéz szerkezet 1. Fogalmak? 1. Hőtároló tömeg 2. Hő kapacitás 3. Hővezető képesség 4. Aktív tömeg 5. Hő csillapítás

Részletesebben

Hőátbocsátás, hőhidak

Hőátbocsátás, hőhidak EPBD Új Épületenergetikai Szabályozás Épületek energetikai jellemzőinek meghatározása 2015.10.03. Hőátbocsátás, hőhidak A határoló szerkezetekkel szemben támasztott követelmények. Hőhidak, hőáramok, vonalmenti

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: ÁLLATTARTÓ TELEP ÉPÍTÉSE (Tervezett állapot) 3734 Szuhogy Belterület Hrsz: 94 Megrendelő: SIMQSPLÉNYI KFT. 3733 Rudabánya,

Részletesebben

HITELES ENERGETIKAI TANÚSÍTVÁNY

HITELES ENERGETIKAI TANÚSÍTVÁNY HITELES ENERGETIKAI TANÚSÍTVÁNY ÖSSZESÍTŐ LAP HET000609 Épület (önálló rendeltetési egység) Rendeltetés: Lakó és szállásjellegű Alapterület: 585 m 2 Cím: 25 Fót Szent Benedek park 365 HRSZ: 4560/37 Megrendelő

Részletesebben

Földszintes L- alaprajzú könnyűszerkezetes családi ház, talajon fekvő padlóval és fűtetlen padlással.

Földszintes L- alaprajzú könnyűszerkezetes családi ház, talajon fekvő padlóval és fűtetlen padlással. Családi ház tervezési példa Földszintes L- alaprajzú könnyűszerkezetes családi ház, talajon fekvő padlóval és fűtetlen padlással. 1. ábra A családi ház alaprajza Családi ház egyszerűsített módszerrel 1.

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Szikra Csaba Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Az EU EPBD (2002/91/EC) direktíva lényegesebb pontjai Az új épületek energia-fogyasztását az ésszerőség határain belül korlátozni kell.

Részletesebben

HITELES ENERGETIKAI TANÚSÍTVÁNY HET

HITELES ENERGETIKAI TANÚSÍTVÁNY HET HITELES ENERGETIKAI TANÚSÍTVÁNY HET- 0 0 5 4 6 6 5 9 Zalai Norbert e.v. TÉ 01-65300 2120 Dunakeszi, Faludi János utca 3. I.em 4. Adószám: 66427746-1-33 Bankszámlaszám: 10101339-51247700-01003002 Energetikai

Részletesebben

ÉPÜLETSZIGETELÉS. Horváthné Pintér Judit okl. építészmérnök, okl. épületszigetelő szakmérnök

ÉPÜLETSZIGETELÉS. Horváthné Pintér Judit okl. építészmérnök, okl. épületszigetelő szakmérnök ÉPÜLETSZIGETELÉS Horváthné Pintér Judit okl. építészmérnök, okl. épületszigetelő szakmérnök Pintér & Laczkovits Épületszigetelő Szakmérnök Bt. pinter.laczkovits@t-online.hu HŐSZIGETELT ÉPÜLETSZERKEZETEK

Részletesebben

Wattok, centik, határidők.

Wattok, centik, határidők. Wattok, centik, határidők A hőszigetelés fejlődése Hőátbocsátási tényező (W/m 2 K) Tető Fal Falazat Állagvédelmi szempontok 1,0 1,4 B30 Energiatakarékosság 1979 0,4 0,70 Uniform Környezetvédelem 1991 (0,3)

Részletesebben

BEVEZETÉS AZ ÉPÜLETFIZIKÁBA

BEVEZETÉS AZ ÉPÜLETFIZIKÁBA BEVEZETÉS AZ ÉPÜLETFIZIKÁBA Dr. Harmathy Norbert egyetemi adjunktus BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék Tematika Bevezetés az

Részletesebben

Baumann Mihály adjunktus PTE PMMK Épületgépészeti Tanszék

Baumann Mihály adjunktus PTE PMMK Épületgépészeti Tanszék Az elsı lépések, avagy az épületek energetikai tanúsítása, tanúsítás jelentısége a lakásszövetkezetek és az ingatlanforgalmazók szemszögébıl Baumann Mihály adjunktus PTE PMMK Épületgépészeti Tanszék 2002/91

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

7/2006. (V. 24.) TNM rendelet. az épületek energetikai jellemzőinek meghatározásáról

7/2006. (V. 24.) TNM rendelet. az épületek energetikai jellemzőinek meghatározásáról 7/2006. (V. 24.) TNM rendelet az épületek energetikai jellemzőinek meghatározásáról Az épített környezet alakításáról és védelméről szóló 1997. évi LXXVIII. törvény 62. -a (2) bekezdésének h) pontjában

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: ÁLLATTARTÓ TELEP ÉPÍTÉSE (Meglévő állapot) 3734 Szuhogy Belterület Hrsz: 94 Megrendelő: SIMQSPLÉNYI KFT. 3733 Rudabánya,

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

Az épületek korszerűsítési beavatkozásainak technológiai lehetőségei és azok energiahatékonysági és megtakarítási lehetőségei Épületszerkezetek

Az épületek korszerűsítési beavatkozásainak technológiai lehetőségei és azok energiahatékonysági és megtakarítási lehetőségei Épületszerkezetek Az épületek korszerűsítési beavatkozásainak technológiai lehetőségei és azok energiahatékonysági és megtakarítási lehetőségei Épületszerkezetek Sólyomi Péter Központi Laboratóriumvezető 1985 k 0,7 W/m

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek

Részletesebben

Új jelentés. Cég ORIGO-SÁNTA ÉPÍTŐ ZRT. Mérést végezte: GYŐRI ÚT 32-36 SOPRON. Schekulin Nándor. Készülék. testo 875-2 szám: nagylátószögű 32x23

Új jelentés. Cég ORIGO-SÁNTA ÉPÍTŐ ZRT. Mérést végezte: GYŐRI ÚT 32-36 SOPRON. Schekulin Nándor. Készülék. testo 875-2 szám: nagylátószögű 32x23 Cég ORIGO-SÁNTA ÉPÍTŐ ZRT GYŐRI ÚT 32-36 SOPRON Mérést végezte: Schekulin Nándor Telefon: 99/511-540 E-Mail: info@origo-santa.hu Készülék testo 875-2 Gyártási szám: Objektív: 1910101 nagylátószögű 32x23

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: Polgármesteri Hivatal 3733 Rudabánya Gvadányi József utca 47. Megrendelő: Rudabányai Közös Önkormányzati Hivatal 3733 Rudabánya,

Részletesebben

HŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította:

HŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította: HŐKÖZLÉS ZÁRTHELYI dja meg az Ön képzési kódját! Név: zonosító: Helyszám: K -- BMEGEENMHT Munkaidő: 90 perc dolgozat megírásához szöveges adat tárolására nem alkalmas számológépen, a Segédleten, valamint

Részletesebben

Passzívházak speciális hőszigetelési megoldásai. alkalmazástechnikai mérnök-tanácsadó

Passzívházak speciális hőszigetelési megoldásai. alkalmazástechnikai mérnök-tanácsadó Passzívházak speciális hőszigetelési megoldásai Szatmári Zoltán Bachl Kft. alkalmazástechnikai mérnök-tanácsadó BEÉPÍTETT MAGASTETŐK HŐHIDPROBLÉMÁI Minden szarufavég átdöfi a homlokzati hőszigetelést.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

Talajon fekvő padló szigetelése (földszintes épület)

Talajon fekvő padló szigetelése (földszintes épület) Talajon fekvő padló szigetelése (földszintes épület) A mai hőtechnikai és felhasználói igényeket tekintve elkerülhetetlen az épületeink földszinti padlószerkezetének megfelelő hőszigetelése a vízszigetelés

Részletesebben

KOMFORTELMÉLET Dr. Magyar Zoltán

KOMFORTELMÉLET Dr. Magyar Zoltán KOMFORTELMÉLET Dr. Magyar Zoltán BME Épületenergetika és Épületgépészeti Tanszék I. Általános bevezetés A Komfortelmélet mindössze néhány évtizedes múltra visszatekintő szaktárgy. Létrejöttének okai:

Részletesebben

Szálas szigetelőanyagok forgalmazási feltételei

Szálas szigetelőanyagok forgalmazási feltételei Szálas szigetelőanyagok forgalmazási feltételei Brassnyó László Knauf Insulation Kft. Szálas szigetelőanyagok szabványai MSZ EN 13162 Hőszigetelő termékek épületekhez. Gyári készítésű ásványgyapot (MW-)

Részletesebben

TÉGLÁSSY GYÖRGYI SZAKDOLGOZAT

TÉGLÁSSY GYÖRGYI SZAKDOLGOZAT TÉGLÁSSY GYÖRGYI SZAKDOLGOZAT vii BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTÉSZMÉRNÖKI KAR ÉPÜLETENERGETIKAI ÉS ÉPÜLETGÉPÉSZETI TANSZÉK SZAKDOLGOZAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

Részletesebben

Épületfizika: Hő és páratechnikai tervezés alapjai Április 9. Dr. Bakonyi Dániel

Épületfizika: Hő és páratechnikai tervezés alapjai Április 9. Dr. Bakonyi Dániel Épületfizika: Hő és páratechnikai tervezés alapjai 2018. Április 9. okl. építészmérnök, tudományos munkatárs BME Épületszerkezettani Tanszék A nedves levegő tulajdonságai (ideális gázok) Állapotjellemzők:

Részletesebben

Épületenergetikai tanúsítás

Épületenergetikai tanúsítás Moviád- Energy Kft 1152 Budapest, Nyaraló u 7. Tel: 06 30 2572-402 Email: moviadkft@gmail.com Épületenergetikai tanúsítás A 2083 Solymár, Sport utca 38 hrsz.: 1504/9; 1504/10 sz. alatti ingatlanról 2014.04.01.

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: Megrendelő: Minta Project 6500 Baja Minta u 42 HRSZ: 456/456 Gipsz Jakab 6500 Baja Minta u 42 Tanúsító: Épületgépész Szakmérnök

Részletesebben

Építőanyagok I - Laborgyakorlat

Építőanyagok I - Laborgyakorlat Építőanyagok I - Laborgyakorlat Hőtechnikai alapfogalmak A hő terjedése az anyagokban Hősugárzás elektromágneses hullámok alakjában Hőáramlás a hőt mozgó anyagrészecskék közvetítik Hővezetés szilárd anyagokban

Részletesebben

Wienerberger K+F füzetek Épületfizika 2005. Téglaépületek főbb épületszerkezetei és csomópontjai hőtechnikai viselkedésének vizsgálata modellépületen

Wienerberger K+F füzetek Épületfizika 2005. Téglaépületek főbb épületszerkezetei és csomópontjai hőtechnikai viselkedésének vizsgálata modellépületen Wienerberger K+F füzetek Épületfizika Téglaépületek főbb épületszerkezetei és csomópontjai hőtechnikai viselkedésének vizsgálata modellépületen 2005. FIZ-01 Tartalom Tisztelt Beruházó, Tervező, Kivitelező,

Részletesebben

Zárófödémek. Padlásfödém nem járható

Zárófödémek. Padlásfödém nem járható Zárófödémek Padlásfödém nem járható Az épületek zárófödémjei a temperált terek olyan felső térelhatároló szerkezetei, amelyek lapostetők esetében önmagukban, vagy külön csapadékkal és más meteorológiai

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI. Dr. Kakasy László 2013.

A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI. Dr. Kakasy László 2013. A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI Dr. Kakasy László 2013. MAI TÉMÁK: I. A BELSŐ TEREK PÁRATARTALMA II. PÁRADIFFÚZIÓ ÉS KONVEKTÍV PÁRATRANSZPORT III. A HŐHIDAK JELENTŐSÉGE I. A BELSŐ TEREK PÁRATARTALMA

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: TÁRSASHÁZ 1032 Épületrész (lakás): Megrendelő: Tanúsító: Szabóné Somfai Beáta okl. építőmérnök MÉK É2 130292 SZÉSZ8 130292

Részletesebben

Épületgépész technikus Épületgépész technikus

Épületgépész technikus Épületgépész technikus É 004-06//2 A 0/2007 (II. 27.) SzMM rendelettel módosított /2006 (II. 7.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI. Dr. Kakasy László 2016.

A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI. Dr. Kakasy László 2016. A HŐ- ÉS PÁRATECHNIKAI TERVEZÉS KÉRDÉSEI Dr. Kakasy László 2016. MAI TÉMÁK: I. A BELSŐ TEREK PÁRATARTALMA II. PÁRADIFFÚZIÓ ÉS KONVEKTÍV PÁRATRANSZPORT III. A HŐHIDAK JELENTŐSÉGE I. A BELSŐ TEREK PÁRATARTALMA

Részletesebben